

Deliverable D.T2.2.1 Infrastructure Report (SERBIA)

Activity A.T2.2: Infrastructure analysis

May, 2022

BLANK PAGE

DOCUMENT CONTROL SHEET

Project reference	
Full title of the project	Innovative model to drive energy security and diversity in the Danube Region via combination of bioenergy with surplus renewable energy
Acronym	DanuP-2-Gas
Programme priority	Priority 3
Programme priority specific objective	SO 3.2 Improve energy security and energy efficiency
Duration	01.07.2020 – 31.12.2022
Project website	www.interreg-danube.eu/danup-2-gas
Project coordinator	TZE

Short Description

The potential for exploitable organic residue for each participating country listing key aspects such as location, amount, transport options and costs.

Document Details	
Title of document	Infrastrucure Report Serbia
Action	WP T2 Transnational Infrastructure and Biomass assessment & Pre-feasibility Studies
Deliverable	D.T2.2.1
Delivery date	May 2022

PROJECT WEESFIELS - Description -

Version	Date	Author	Organization	Description
V1	May 2022	F. Kulic RDA Banat team	RDA Banat	1 st version

IMPRINT

This document is issued by the consortium formed for the implementation of the DanuP-2-Gas project by the following partners:

- LP Technology Centre Energy University of Applied Sciences Landshut (DE)
- ERDF PP1 Energy AGency of Savinjska, Koroška and Šaleška Region (SI)
- ERDF PP2 Tolna County Development Agency Nonprofit Public Ltd.(HU)
- ERDF PP3 Energy Institute at the Johannes Kepler University Linz (AT)
- ERDF PP4 Black Sea Energy Research Centre (BG)
- ERDF PP5 URBASOFIA SRL (RO)
- ERDF PP6 Deggendorf Institute of Technology (DE)
- ERDF PP7 National Recycling Agency of Slovakia (SK)
- ERDF PP8 Institute of Technology and Business in České Budějovice (CZ)
- ERDF PP9 MAHART-Freeport Co. Ltd (HU)
- ERDF PP10 International Centre for Sustainable Development of Energy, Water and Environment Systems (HR)
- ERDF PP11 Energy Institute Hrvoje Požar (HR)
- ERDF PP12 University of Zagreb Faculty of Electrical Engineering and Computing (HR)
- IPA PP1 Regional Agency for Socio Economic Development Banat Ltd (RS)

Responsible Partner for the compilation of this document

LP Technology Centre Energy - University of Applied Sciences Landshut (DE) ERDF PP1 Energy Agency of Savinjska, Koroška and Šaleška Region (SI)

BLANK PAGE

CONTENT

1.	ME	THODOLOGY	9
2.	BRIE	EF DESCRIPTION OF SERBIAN INFRASTRUCTURE LANDSCAPE	.10
	2.1	Electrical Energy Section	.10
	2.2	Natural Gas Energy Section	.15
	2.3	Biochar Supply Section	.18
	2.4	Water Supply Section	.18

Version	Date	Author	Organization	Description
v1	26.10.2020	Kiril Raytchev	BSERC	Initial version
v2	05.11.2020	Kiril Raytchev	BSERC	Suggestions from the Supervisory board meeting (03.11.2020)
v3	21.12.2020	Kiril Raytchev	BSERC	Suggestions from PP12
V4	21.01.2021	Kiril Raytchev	BSERC	Internal call for feedback. See Meeting-minutes-20210127_V2 and Meeting-minutes-20210121
V5	31.12.2021	Kiril Raytchev	BSERC	Synching with the Interface of the Optimization tool; Added request for information about biochar transport prices; Added request for information about costs for connecting to water / gas / electrical grid; Accompanying versions of other templates: V6_D.T2.1.2_Biomass Database_COUNTRY; V6_D.T2.2.2_Infrastructure Database_COUNTRY; V1_Pre- feasibility StudyCOUNTRY; V4_D.T2.1.1_Biomass Report_COUNTRY
v5-1	26.02.2022	Kiril Raytchev	BSERC	Secondary market regulation info has been marked as not mandatory, but nice to have,

1. METHODOLOGY

This document provides the overview of the several infrastructure data in the case of Republic of Serbia. For gathering of the information several sources were used, mainly registers of the Serbian Ministry of mining and energy (MRE), and Energy Agency of the Republic of Serbia (AERS) Public company Electric power industry (EPS) of Serbia and Public company Serbiagas (SG).

In the case of industrial powerplants, the information has been taken from the regular web site of Serbian Ministry of mining and energy and Public company Electric power industry of Serbia.

Connection points for various energy sources were searched for using the available geographical information. Most of the data collected referred to the electrical connection points (transformation stations available in the country), which were obtained through communication with the EPS. However, the remaining data was difficult to collect – the starting point was the schematic representation of the network provided by the national electric energy company (EPS), which soon proved to be difficult to analyze, as well as time consuming. In the end, it was used as a reference for gathering detailed location information. The second source used was EPS database with correct placement of all the transformation provided there was cross checked with the satellite imagery and the schematic representation mentioned earlier and proved to be a valid source of spatial information. The same source was used when searching for the information regarding the transnational connections, as well as providing the type of voltage connection for each point.

In terms of water connections, utility companies providing the service, were contacted, with the intention of trying to find specific points for P2G hubs to connect to the water grid. However, the feedback from utility companies was that connection points were possible anywhere near the existing water grids. As the Tool for Optimizing Sector Coupling Hubs cannot incorporate the entire water grid, only specific locations, it is considered that P2G hub can be connected anywhere along the water grid. Through communication with utility companies, it was concluded that the connection to the water grid, in financial terms, is quite low, especially in comparison to the entire P2G hub.

Regarding the gas grid in Serbia in this moment there are no plans for injecting of biogas to transmission nor distribution gas grid. All production of biogas is using at the production location for electrical and heat power production.

As far as transport hubs are concerned, there were several located, with first ones mentioned earlier, which were a part of the industrial plants. As most of the inland transport in Serbia is done by road, the work was focused on industrial freight train facilities (road-rail transport hub) which would be capable of handling larger amounts of goods. The list of these industrial train stations was found in several reports. Additionally, several river Danube ports are being listed. Five river ports act as hubs with three modes of transportation since they usually include the train and road vehicle loading facilities and three act as a water-road hubs.

2. BRIEF DESCRIPTION OF SERBIAN INFRASTRUCTURE LANDSCAPE

In the recent years there has been some progress in renewable energy infrastructure installation. However, compared to other countries, Serbia still has much to improve. This is clearly visible in the case of harvesting the potential of solar energy and biomas. Despite its beneficial geographical location Serbia has less then 10 MW of installed photovoltaic production capacities. Due to the lower installation costs, there has been some improvement in small photovoltaic installations (housing), but not so much on the larger scale. Wind energy has been harvested in higher extent, also with some new planned projects. Serbia has also traditionally relied on the coal-fired thermal and hydro powerplants, with some of the recent new project being held due to environmental concerns.

2.1 ELECTRICAL ENERGY SECTION

	5		
Tariff element	Billing element	Unit	Tariff [EUR]
Power	calculated power	kW	0,493
	excessively taken power	kW	1,970
Active energy	higher tariff - HT (day 07:00-23:00)	kWh	0,004

Tariffs for access to the transmission system

	lower tariff - LT (night 23:00 - 07:00)	kWh	0,002
Reactive energy	reactive energy	kvarh	0,002
	excessively taken reactive energy	kvarh	0,004

Achieved average prices of access to the distribution system

Consumption category	Price [EUR/kWh]
35 kV	0,012
10 (20) kV	0,015
Low voltage (0.4 kV l stage)	0,039
0.4 kV II stage	0,041
households	0,036
Public lighting	0,029
AVERAGE	0,031

Tariffs for the category of consumer goods by consumption zones

Wide consumption	Price [EUR/kWh]
Cost of public supplier	1,415
Calculated power	0,453
Active energy	
HT, green, up to 350 kWh/month (07:00-23:00)	0,064
LT, green, up to 350 kWh/month (23:00-07:00)	0,016
UT, green, up to 350 kWh/month (0:00-24:00)	0,056
HT, blue, 351-1600 kWh/month (07:00-23:00)	0,095
LT, blue, 351-1600 kWh/month (23:00-07:00)	0,024
UT, blue, 351-1600 kWh/month (0:00-24:00)	0,083
HT, red, over 1600 kWh/month (07:00-23:00)	0,191
LT, red, over 1600 kWh/month (23:00-07:00)	0,048
UT, red, over 1600 kWh/month (0:00-24:00)	0,167

Achieved average annual retail prices on the free market for end customers

Consumption category	Price [EUR/kWh]
High voltage (110 kV)	0,066
35 kV	0,071
10 (20) kV	0,082
Total high and medium voltage	0,077
Low voltage (0.4 kV l stage)	0,105

0.4 kV II stage0,104households0,105Public lighting0,082Total low voltage0,102TOTAL AVERAGE0,085

The structure of the realized average annual retail price on the free market for end customers

Elements	Price [EUR/kWh]
HIGH VOLTAGE - (110 kV) on transmission	
total price	0,066
Transfer fee	0,005
The price of electricity	0,061
MEDIUM VOLTAGE (35 kV + 10 (20) kV)	
total price	0,080
Transfer fee	0,014
The price of electricity	0,066
MEDIUM VOLTAGE - (35 kV)	
total price	0,071
Transfer fee	0,012
The price of electricity	0,059
MEDIUM VOLTAGE - (10/20 kV)	
total price	0,082
Transfer fee	0,014
The price of electricity	0,068
LOW VOLTAGE (0.4 kV I degree)	
total price	0,105
Transfer fee	0,036
The price of electricity	0,069
WIDE CONSUMPTION	
total price	0,105
Transfer fee	0,035
The price of electricity	0,069
Wide consum - Commercial and others (0.4 kV II degree)	
total price	0,105
Transfer fee	0,035
The price of electricity	0,069

Wide consum - household	
total price	0,105
Transfer fee	0,035
The price of electricity	0,070
PUBLIC LIGHTING	
total price	0,082
Transfer fee	0,029
The price of electricity	0,053
TOTAL SALES ON THE DISTRIBUTION NETWORK	
total price	0,088
Transfer fee	0,022
The price of electricity	0,067
TOTAL ON TRANSMISSION AND DISTRIBUTION NETWORKS	
total price	0,084
Network fee	0,020
The price of electricity	0,066

• Peak monthly pricing

15-minutes PEAK POWER price is 3,82 [€/kW]

• *TAX*

Excise tax is 7,5% and VAT is 20%. VAT is calculated for price with excise tax added.

In 2020 (data for 2021 is not published yet), the power plants in the Republic of Serbia achieved a total production of 35.540 GWh. Of that, coal-fired thermal power plants produced 68,6%, hydropower plants connected to the transmission system 26,5%, thermal power plants-heating plants 0,5%, wind power plants connected to the transmission system 2,5% while other power plants (small power plants connected to the distribution system) produced 1,9% of the total electricity produced

Table shows data for Energy production and consumption in Serbia for 2020. Data for 2021 are not available yet.

PRODUCTION	GWh/year
Hydropower plants	9.419
Coal-fired power plants	24.331
Thermal power plants - heating plant	192
Wind farms connected to transmission grid	905
Other power plants connected to distribution grid (sun, biogas, wind)	693
TOTAL PRODUCTION	35.540
Other (UNMIK)	3
Import of EPS and suppliers for trade in Serbia	4.444
TOTAL AVAILABLE	39.987
Export of EPS and suppliers - el.en. produced and purchased in Serbia	4.708
Pumping needs	1.082
Other (UNMIK)	337
GROSS CONSUMPTION	33.853
Transmission network losses	798
Distribution network losses	3.587
TOTAL LOSSES	4.385
Losses in relation to gross consumption	13,00%
FINAL CONSUMPTION	29.468

- unit cost for transmission electrical grid connection, average for 400 kV, 220 kV and 110 kV is 0,50 [€ / kW * km]
- unit cost for distribution electrical grid connection, average for 35 kV, 20 kV, 10 kV and 0,4 kV is 0,80 [€ / kW * km]
- capacity cost for transmittion electrical grid connection, average for 400 kV, 220 kV and 110 kV is 1,80 [€ / kW]
- capacity cost for distribution electrical grid connection, average for 35 kV, 20 kV, 10 kV and 0,4 kV is 2,90 [€ / kW]

2.2 NATURAL GAS ENERGY SECTION

NATURAL GAS PRICES FOR PUBLIC SUPPLY

Tariffs	Customer categories						
	Category 1 (p <6 bar)			Category 2 (6 \leq p \leq 16 bar)			
	Small	Extraord	Even	Uneven	Extraord	Even	Uneven
	consum ption	inary consum ption C1	consum ption C1	consum ption C1	inary consum ption C2	consum ption C2	consum ption C2
Energy (EUR / kWh)	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Capacity (EUR / kWh / day / year)	0,00	0,06	0,14	0,16	0,04	0,08	0,10
Fee per place of delivery (EUR / place of delivery / year)	1,38	1,38	1,38	1,38	13,82	13,82	13,82

PRICES OF ACCESS TO THE NATURAL GAS DISTRIBUTION SYSTEM

Tariffs	Delivery points						
	Category 1 (p <6 bar)			Category 2 ($6 \le p \le 16$ bar)			
	Small	Extraord	Even	Uneven	Extraord	Even	Uneven
	consum ption	inary consum ption C1	consum ption C1	consum ption C1	inary consum ption C2	consum ption C2	consum ption C2
Energy (EUR / kWh)	0,007	0,004	0,004	0,004	0,003	0,003	0,003
Capacity (EUR / kWh / day / year)	0	0,063	0,135	0,158	0,039	0,083	0,098

PRICES OF ACCESS TO THE NATURAL GAS TRANSPORT SYSTEM

Capacity tariffs		Continuous capacity (EUR / kWh / day)	Interrupt capacity (EUR / kWh / day)	Return capacity (EUR / kWh / day)
Annual tariff	input capacity from the transport system	0,13	0,13	0,03
	input production capacity	0,18	0,18	0,04
	input capacity warehouse	O,11	O,11	0,02
	domestic consumption output capacity	0,08	0,08	0,02
	interconnector output capacity	0,29	0,29	0,06

Capacity tariffs		Continuous	Interrupt	Return
		capacity	capacity	capacity
		(EUR / kWh /	(EUR /	(EUR /
		day)	kWh/	kWh/
	T		day)	day)
Monthly tariff	input capacity from the transport system			
	January, February, December	0,042	0,042	0,009
	March, November	0,032	0,032	0,006
	April, October	0,021	0,021	0,004
	May, June, July, August, September	0,011	0,011	0,002
	input production capacity			
	January, February, December	0,056	0,056	0,011
	March, November	0,042	0,042	0,008
	April, October	0,028	0,028	0,006
	May, June, July, August, September	0,014	0,014	0,003
	input capacity warehouse			
	January, February, December	0,034	0,034	0,007
	March, November	0,025	0,025	0,005
	April, October	0,017	0,017	0,003
	May, June, July, August, September	0,009	0,009	0,002
	domestic consumption output capacity			
	January, February, December	0,024	0,024	0,005
	March, November	0,018	0,018	0,004
	April, October	0,012	0,012	0,002
	May, June, July, August, September	0,006	0,006	0,001
	interconnector output capacity		I	•
	January, February, December	0,092	0,092	0,018
	March, November	0,069	0,069	0,014
	April, October	0,046	0,046	0,009
	May, June, July, August, September	0,023	0,023	0,005

Heating value 10,55 [kWh/m3]

VAT for gas business is 10%

unit cost for gas grid connection 0,10 [\in / (kWh/h) * km] Transmission grid

unit cost for gas grid connection 0,15 [\in / (kWh/h) * km] Distribution grid

capacity cost for gas grid connection 0,40 [\in / (kWh/h)] Transmission grid

capacity cost for gas grid connection 0,65 [\in / (kWh/h)] Distribution grid

2.3 BIOCHAR SUPPLY SECTION

There is no commercial production of biochar in Serbia.

2.4 WATER SUPPLY SECTION

Price for individual and business consumers are given in the next tables. Price includes operators/grid fees and taxes

Individual consumers	[€/m3]
Water	0,466
Sewage	0,294

Business consumers	[€/m3]
Water	1,099
Sewage	0,691

Unit cost for water grid connection $[\notin / (m3/h) * km]$ depends on the terrain configuration and place of construction (city, village, urban or rural environment, in or outside a populated area) and it can be within very wide limits. The price goes from 100 to more than 1000 $[\notin / (m3/h) * km]$. Average it is about 350 $[\notin / (m3/h) * km]$.

Capacity cost for water grid connection $[\in / (m3/h)]$ also depends on different conditions and can be from 300 up to 1000 $[\in / (m3/h)]$. Average it is about 550 $[\in / (m3/h)]$.

The drilled water well price in Serbia is about 100 [\in / m] for wells with next characteristics:

- diameter of well up to 450 mm;
- steel and pvc well constructions from Ø 110 mm to Ø 323 mm;
- depth up to 300 m.